Concept to remember:

Chemical Thermodynamics-III:

Change in internal energy= ΔU = heat transfer at constant volume (q_v)

As at constant volume $\Delta V=0$; work done =0; so, $q_v = \Delta U$

Generally, chemical reactions don't take place under constant volume, rather take place under constant pressure condition and the heat transfer at constant pressure process is denoted as q_p

Enthalpy doesn't depend on path. $\Delta H = \Delta (U + PV)$. At constant pressure, $\Delta H = \Delta U + P\Delta V$

Extensive property: Depends on size of the system

Intensive property: Independent of the size of the system

For constant pressure, $q_p = C_p \Delta T = \Delta H$ and at constant volume, $q_v = C_v \Delta T = \Delta U$

For 1 mol ideal gas, $\Delta H = \Delta U + \Delta (PV) = \Delta U + \Delta (RT) = \Delta U + R\Delta T$

Hence, $C_p \Delta T = C_v \Delta T + R \Delta T \rightarrow C_p = C_v + R \rightarrow C_p - C_v = R$